A novel approach to estimate trabecular bone anisotropy from stress tensors.

نویسندگان

  • Javad Hazrati Marangalou
  • Keita Ito
  • Bert van Rietbergen
چکیده

Continuum finite element (FE) models of bones and bone-implant configurations are usually based on clinical CT scans. In virtually all of these models, material properties assigned to the bone elements are chosen as isotropic. It has been shown, however, that cancellous bone can be highly anisotropic and that its elastic behavior is best described as orthotropic. Material models have been proposed to derive the orthotropic elastic constants from measurements of density and a fabric tensor. The use of such relationships in FE models derived from CT scans, however, is hampered by the fact that the measurement of such a fabric tensor is not possible from clinical CT images since the resolution of such images is not good enough to resolve the trabecular micro-architecture. In this study, we explore an alternative approach that is based on the paradigm that bone adapts its micro-architecture to the loading conditions, hence that fabric and stress tensors should be aligned and correlated. With this approach, the eigenvectors and eigenvalues of the element continuum-level stress tensor are used as an estimate of the element fabric tensor, from which the orthotropic material properties then are derived. Using an iterative procedure, element orthotropic material properties and fabric tensors are updated until a converged situation is reached. The goals of this study were to investigate the feasibility and accuracy of such an iterative approach to derive orthotropic material properties for a human proximal femur and to investigate whether models derived in this way can provide more accurate results than isotropic models. Results were compared to those obtained from models of the same femurs for which the fabric was measured from micro-CT scans. It was found that the iterative approach could well estimate the orientation of the fabric principal directions. When comparing the stress/damage values in the models with material properties based on estimated and measured fabric tensors, the differences were not significant, suggesting that the material properties based on the estimated fabric tensor well reflected those based on the measured fabric tensor. Errors were less than those obtained when using isotropic models. It is concluded that this novel approach can provide a reasonable estimate of anisotropic material properties of cancellous bone. We expect that this approach can lead to more accurate results in particular for models used to study implants, which are usually anchored in highly anisotropic cancellous bone regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs

More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...

متن کامل

Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.

The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density, and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted st...

متن کامل

Prediction of Trabecular Bone Anisotropy from Quantitative Computed Tomography Using Supervised Learning and a Novel Morphometric Feature Descriptor

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that bu...

متن کامل

Techniques for Computing Fabric Tensors: A Review

The aim of this chapter is to review different approaches that have been proposed to compute fabric tensors with emphasis on trabecular bone research. Fabric tensors aim at modeling through tensors both anisotropy and orientation of a material with respect to another one. Fabric tensors are widely used in fields such as trabecular bone research, mechanics of materials and geology. These tensors...

متن کامل

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2015